Chain graph models of multivariate regression type for categorical data
نویسندگان
چکیده
Abstract: We discuss a class of graphical models for discrete data defined by what we call a multivariate regression chain graph Markov property. We propose a parameterization based on a sequence of generalized linear models with a multivariate logistic link function. We show the relationship with a chain graph model recently defined in the literature, and we prove that the proposed parametrization for the joint distribution defines a complete and hierarchical marginal log-linear model.
منابع مشابه
Iterative Conditional Fitting for Discrete Chain Graph Models
‘Iterative conditional fitting’ is a recently proposed algorithm that can be used for maximization of the likelihood function in marginal independence models for categorical data. This paper describes a modification of this algorithm, which allows one to compute maximum likelihood estimates in a class of chain graph models for categorical data. The considered discrete chain graph models are def...
متن کاملDiscrete chain graph models
The statistical literature discusses different types of Markov properties for chain graphs that lead to four possible classes of chain graph Markov models. The different models are rather well understood when the observations are continuous and multivariate normal, and it is also known that one model class, referred to as models of LWF (Lauritzen–Wermuth–Frydenberg) or block concentration type,...
متن کاملRandom Effects Graphical Models for Multiple Site Sampling∗†
We propose a two component graphical chain model, the discrete regression distribution, in which a set of categorical (or discrete) random variables is modeled as a response to a set of categorical and continuous covariates. We examine necessary and sufficient conditions for a discrete regression distribution to be described by a given graph. The discrete regression formulation is extended to a...
متن کاملBayesian multivariate logistic regression.
Bayesian analyses of multivariate binary or categorical outcomes typically rely on probit or mixed effects logistic regression models that do not have a marginal logistic structure for the individual outcomes. In addition, difficulties arise when simple noninformative priors are chosen for the covariance parameters. Motivated by these problems, we propose a new type of multivariate logistic dis...
متن کاملInvestigating the accuracy of multivariate regression and ARIMA models in predicting water demand (Case Study: Mashhad city)
Awareness of water demand is of particular importance for its policy in urban management. Predicting water demand in the future will allow managers to take the necessary measures regarding sustainable water supply, given the constraints and crises ahead. The purpose of this study is to compare multivariate regression and ARIMA models to predict water demand in Mashhad. In this study, first, the...
متن کامل